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An analysis is presented for the non-inertial descent of an inclined sinkage 
element (a rectangular prism) through a viscous fluid onto a rigid surface. The 
effects of sinkage-element deformability, slip velocity and time-dependent 
loading conditions are considered. Unlike previous analyses no assumptions are 
made a priori about the form of the pressure distribution during, or the effect 
of corners on, inclined sinkage. The results for rigid square plates are compared 
with those of previous analyses and with the limited amount of experimental 
data available. Results are also presented for a deformable sinkage element, 
which is used to model the action of an individual tyre tread element on a wet 
pavement. An inclination function based on available data on the tyre surface 
shape in the footprint region is used. The loading function for this case is based 
on measured values of tyre footprint pressure. 

1. Introduction 
The approach of either a deformable and a rigid body or two deformable 

solids through an intervening viscous fluid is an essential feature of many 
lubrication and tyre traction problems. The theoretical contributions of 
Christensen (1961,1970), Herrebrugh (1970)andLee & Cheng (1973) to modelling 
such elastohydrodynamic (EHD) squeeze film problems all dealt with the hard 
EHD range. In  the hard EHD range, the elastic moduli of the materials are 
sufficiently high that lubricant pressures capable of deforming them significantly 
will also substantially alter the lubricant’s viscosity. The experimental work of 
Dowson & Jones (1967-68) dealt with this type of problem. 

There has been a limited amount of work published concerning the squeeze 
film problem in the soft EHD range, where large deformations occur a t  low 
pressures. Several recent experimental investigations have dealt with this 
problem (Gaman, Higginson & Norman 1974; Roberts 1974). A theoretical 
analysis of the EHD squeeze film problem was presented by Rohde, Whicker 
& Browne (1976) and used to model the non-inertial descent of a tyre tread 
element onto a wet pavement (Browne, Whicker & Rohde 1975). The analysis 
by Browne et al. (1975) incorporated tread-element deformation, wheel slip and 
time-dependent loading. Previous tyre traction studies have treated the elements 
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as rigid (Browne 19753; Bathelt 1973; Kienle 1974). The most frequently 
reported tread-element sinkage model, that of parallel sinkage, assumes the top 
of the tread element to be parallel to the plane of the pavement surface (Bathelt 
1973; Kienle 1974). In  Moore (1964) the expressions for parallel sinkage were 
modified for inclined sinkage by the introduction of a polynomial in the dimen- 
sionless angle of inclination. That theory neglected the pressure asymmetry 
caused by inclination of the plate. Some experimental results for the inclined 
sinkage of a flat plate in SAE 400il were also reported. Sinnamon & Tielking (1974) 
conducted some experiments with a rotating plate in an attempt to simulate 
certain features of a tyre rolling on a wet pavement. Inertial forces are important 
for the water depth and velocities a t  which their experiments were performed. 

In  this study we investigate the effects of inclination on the non-inertial 
descent of a sinkage element onto a smooth rigid surface. The approach used 
is based on that of Rohde et al. (1976) and Browne et al. (1975). Initially, we 
consider a rigid plate under constant load with an angle of inclination which 
varies linearly from a maximum value at the initial film thickness to a minimum 
value at zero (minimum) film thickness. We compare our results for this case 
with those presented by Moore (1964). Next we consider the case where the fluid 
pressure loading is constrained such that the equation of motion of an inertial 
mass in a direction normal to the rigid surface is satisfied. The results for this case 
are compared with the experimental data reported by Moore (1964). Finally, 
the analysis is used to simulate the descent of a tread element onto a pavement. 
The time dependence of the angle of indination is based on the limited amount 
of tyre deformation data (Browne 1975a) available. A loading function based 
on tyre footprint pressure measurements (Browne et al. 1975; Lippmann & 
Oblizajek 1974) is considered. 

2. Formulation 
Consider the non-inertial descent of an inclined sinkage element onto a smooth 

rigid surface through a thin film of lubricant. The deformable sinkage element 
(figure 1) consists of an elastic layer of material bonded to a rigid surface. As the 
sinkstge element descends (figure 2 )  i t  also rotates such that the angle of inclina- 
tion a t  time t is @ ( t ) .  We shall denote the initial and h a 1  values of @ ( t )  by a and 
/3, respectively. For the cases considered here, the angle of inclination @ ( t )  is 
sufficiently small that we can make the small angle approximation (cos @ ( t )  = 1) 
and set the co-ordinate X’ along the inclined sinkage element equal to the co- 
ordinate X along the rigid surface. We consider only those cases for which the 
reduced Reynolds number Be satisfies 

where hm(t) = H,(t) - D (see also figures 1 and 2). Fluid inertial effects can then 
be neglected, and the intervening fluid is adequately characterized by the 
Reynolds equation 
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Rigid backing plate 

Elastic layer 

FIUURE 1. Sinkage-element geometry. 

Initial position of backing plate 

FIUURE 2. Motion of sinkage element. 

where U is the slip velocity between the two surfaces. For the problems con- 
sidered here, the fluid pressure levels are low enough that the fluid viscosity 
,u and density p may be treated as constants. 

The thickness of the fluid film can be expressed as the sum of two factors: 

h ( X ,  2, t )  = h,(X, t )  +h,(X, 2, t ) .  (3) 

Here ho(X , t )  is obtained by subtracting the undeformed thickness D of the 
elastic layer from the expression hB(X,t )  for the height of the rigid backing 

(4) surface : h,(X, t )  = h,(X, t )  - D.  
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The remaining factor hl(X,  2, t )  is the vertical displacement of the elastic layer 
owing to the pressure of the fluid film. 

Following the approach of Rohde et al. (1976) and Browne et al. (1975), we 
introduce a linear operator 3 which relates the surface loading to the deforma- 
tion of the elastic layer:? hl = 3P. 
The expression for the film thickness now becomes 

( 5 a )  

( 5 b )  h ( X ,  2, t )  = h,(X, t )  - D + 9P. 
Substituting this expression into Reynolds’ equation, we obtain a single equation 
in P and I t ,  which describes our elastohydrodynamic system: 

u a  
-6 , -9P-- - (h0+3P)  2 ax = 0. 

We seek a numerical solution of this equation. P and h, are approximated by the 
expressions 

and 
P ( X ,  2, t )  = [ P ( X ,  2, t )  - P ( X ,  2, t - At)]/At 

ho(X, t + At) = h,(X, t )  + AtL,(X, t ) .  

h,(X, t )  = h,(t) +XtanO(t), 

( 7 a )  

(7 b )  

(8) 

where h,(t) = H,(t) - D  (figure 2). For a known function @ ( t ) ,  the approxima- 
tions (7) together with (8) reduce the number of dependent variables at time t 
to two: P and h,(t). 

The boundary conditions for the rectangular region of solution 0 6 X < L, 
0 < 2 < QBare 

For the type of motion being considered here we have (figure 2) 

P = 0 at X = 0,L for all 2, 
P = 0 a t  2 = QB forallX, 

aP/aZ = 0 at 2 = 0 for all X, 
where we have taken advantage of the symmetry about 
condition is 

h,(X, t )  = h,(O) + X tan a. 

(9) 

the X axis. The initial 

(10) 

The system (5)-(10) cLtn be solved subject to time-varying constraints on P and 
6,. Note that 6, can, in this sense, be regarded as a control which takes values 
such that functionals of the pressure satisfy the imposed constraints. Specific 
constraints considered in this study are constant load W ,  

time-varying-load W(t) ,  

/ Z B / ? ( X ,  2, t )  d X d 2  = W(t),  

t The -Y, 2 and 5 dependences are to be understood. 
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and the vertical equation of motion for the element, 

Here Me,, is the effective mass of the sinkage element. For these constrairits we 
replace (7a)  at t = 0 with the condition P ( X ,  2, 0) = 0. Otherwise, for 

P(X,Z,O) > 0, 

(7 a) becomes indeterminate as At -+ 0. 
Equations (6)-(8), a specified function @ ( t )  and one of the constraints (11) 

form a nonlinear integro-differential system of equations in P ( X ,  2, t )  and 
hm(t) subject to the boundary and initial conditions (9) and (10). Substituting 
(7) and (8) into (6) and (11) we can rewrite (6) and (11) as the operator equationst 

a(P, hm) = 0, P(P, hm) = 0, (12) 
subject to conditions (9) and (10). 

Newton's method (Collatz 1966) is then used to construct solutions to (12). 
We let 8, P and 8, hm be solutiom of the system of linear integro-differential 
equations 

} (13) 
a ( P ,  h;) + ap a ( P ,  hZ) s, P + ak, a(P", h;) 8, hm = 0, 
B ( P ~ ,  h;) + a p  p(pn, h;) 8, P + aim p ( ~ ,  h;) s, hm = o 

p n + 1  = pm + 8, p, h;+1 = hn + 8 k m It m- 
and define 

Here a,[ ] and aim[ ] denote the Frechet derivatives of an operator with respect 
to P and hm respectively. These derivatives (if they exist) at P and hm are given 
bv 

where 0 represents either the operator 01 or the operator 8. For a given Po and 
hk, & and may be found by solving (13). If P, and hk are in the region of 
attraction of the iterative scheme then the scheme will converge. For a detailed 
discussion of this method of solving operator equations see Collatz (1966). 

The next step in the numerical solution of this system is to obtain an explicit 
discretized representation of the operator. The sinkage-element surface is sub- 
divided into small rectangles of area LB/n2. A three-dimensional finite-element 
analysis using hexahedral elements and linear interpolation functions is then 
used to determine the stiffness matrix K which relates the elastic displacements 
at the surface nodes to the fluid force acting on the sinkage-element surface. 
Then the nodal displacements U, are related to the fluid force F by the expression 

U, = K-IF, (14a)  

where K-1 is the compliance matrix. 

t The dependence of P on X ,  Z and t and of h, on t in (12) and in the subsequent 
discussion of the solution procedure is to be understood. 
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For a segment of the subdivided sinkage element, P is just 

P = P(LB/n2). (lab) 

Substituting (14b) into (1 4a) and non-dimensionalizing the resulting expression 
we obtain 

where 

eer is a reference pressure and E the Young’s modulus of the elastic layer. 
The linearized system (13) was discretized using the finite-difference method, 

and the operator 9 was replaced by its discrete representation 8R-l. The 
resulting system of linear algebraic equations was then solved using Gaussian 
elimination. 

The results for a deformable sinkage element presented here are for the 
geometry depicted in figure 1. This sinkage-element geometry is the same as that 
considered in Browne et al. (1975). 

3. Rigid flat plate 
This formulation was first employed to study the effect of inclination on the 

non-inertial descent of a rigid flat plate. The analysis for a rigid element is 
obtained by setting S = 0. We consider the same function for @ ( t )  as did Moore 
(1964), that is 

The following set of parameter values was used for this case: 

P!.* = 9.38 x 10-2kPa, 
L = 229mm, hm(0) = 6-35mm, n = 8, 

,u = 0.4137Ns/m2, 
p/p = 4.3 x 10-5m21s. 

The interfacial lubricant to which these parameter values correspond is SAE 40 
oil at 77 O F .  Substituting this set of parameters in (l), we find that, for this case, 
where the sinkage velocity is of the order of lO-lm/s, fluid inertial effects can 
be neglected. 

We denote the centre-point film thickness by h, and define the average sinkage 
velocity Kink by 

Kink = - ; p p x .  (16) 

Characteristic curves of average sinkage velocity us. for parallel and inclined 
plates under a constant load of 4-89 N are shown in figure 3. The corresponding 
results obtained using the treatment of Moore (1964) are plotted here for com- 
parison. For parallel surfaces ( @ ( t )  = 0 ) ,  both solution procedures yield results 
in agreement with those obtained by Hays (1962).t For all other cmes considered, 

t Note that Moore (1964) arbitrarily introduced a constant in the expression for the 
sinkage rate, so that this expression agreed with that obtained by Hays (1962). 
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FIGURE 3. Comparison of predicted sinkage velocity with theory of 
Moore (1964). -, Browne et al.; - - - , Moore. Load = 4.89 N. 

the procedure of Moore (1964) predicts higher values for the sinkage velocity. 
Moore’s (1964) treatment is based on the assumptions (i) that the corner effects 
for an inclined square plate are the same as the corner effects for a parallel square 
plate and (ii) that the asymmetry of the pressure distribution caused by plate 
inclination is negligible. On the basis of the rather dubious assumption that the 
distance the point of maximum pressure moves towards the leading edge is 
equal to the distance between the centre of gravity and centre of pressure, 
Moore (1964) concludes that the former distance is about 0.015L. He therefore 
neglects the effects of pressure asymmetry. We have found, however, that 
inclination results in a significant asymmetry of the pressure distribution. The 
centre-line pressure distribution across an inclined plate is plotted in figure 4. 
The point of maximum pressure has moved a distance of over 0.15L towards 
the leading edge. 

Characteristic Kink ws. hz curves for several (constant) loads are presented in 
figure 5 .  The results predicted by the theory presented by Moore (1 964) for these 
casea are also plotted along with some experimental data reported by Moore 
(1964). The experimental apparatus used by Moore (1964) consisted of a mech- 
anical linkage carrying a heavy square plate a t  one end and a system of counter- 
weights at the other end. The applied load for such an apparatus is actually equal 
to the weight excess of the plate (over the counterweights) plus an inertial term 
clue to the acceleration of all of the masses. It should also be noted that with this 
counterweight system the mass to be accelerated increases as the load is decreased 
(by adding counterweights). Equation (1 1 c) is the appropriate constraint for 
this case. We introduce the approximation 
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X / L  
FIUTJRE 4. Centre-line pressure distribution. a = &-, = 0, L = 229mm, 

SAE 40 oil a t  77 O F ,  3 W/(P,,,L)z = 1.0, h,(O) = 6.351nm. 

Q) 

.r( 0.05 

Height, h: x lo4 (cm8) 

FIUTJRE 5 .  Sinkage velocity: comparison of theory with experiment. -, theory (Browne 
eta!.); A-A, inertial theory (Browneeta2.);---, experiment (Moore); O----O. theory 
(Moore). Values of all parameters except W as in figure 4. 

and solve the system (6)-( 10) subject to the constraint (1 1 c ) .  Since no detailed 
information about the linkage mass and moment of inertia was available, only 
the inertial effects of the plate and counterweights were considered. The results 
of an analysis incorporating these effects are plotted in figure 5 .  For all three 
weights, the inertially constrained theory predicts values which are in closer 
agreement with the reported experimental data than are values based on the 
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Distance into patch (mm) 

FIGURE 6 .  Interfacial pressure distribution BBPCZ under tread rib for dry contact and free 
rolling at  zero camber and steer at an inflation pressure of 179 kPa; 100 % tyre and rim 
association load of 7030 N, size H tyre. From Lippmann & Oblizajek (1974). BBP, belted 
bias ply tyre; C, centre rib ; 2, correction for effect of upstream water film. 
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FIGURE 7. Time histories of the minimum film thickness. __ , rigid, parallel, constant 
load, no slip (S = 0, a = /3 = 0, v = 1.0, U = 0); -0-, flexible, parallel, constant load, 
no slip (8 = 83-705, a = /3 = 0, = 1.0, U = 0); ---, rigid, rotating, constant load, no 
slip (S = 0, CL. = A-, /3 = 0, w = 1.0, U = 0); - -0- -, flexible, rotating, constant load, no 
slip (S = 83.705, a = 53-, /3 = 0, v = 1.0, U = 0); - - A- -, flexible, rotating, constant load, 
slip (S = 83.705, a = &,-, /3 = 0, w = 1.0, U = 0.87 m/s); - - -, flexible, rotating, varying 
load, no slip (S = 83.705, O(t) from moir6 data, BBPCZ, U = 0). 

theory of Moore (1964). For the 8.9N load the best agreement is obtained by 
neglecting the inertial effects of the weights and plate. Any friction in the 
linkage or other experimental error would be most significant for this case. 

4. Deformable sinkage element 
The analysis was next applied to a deformable sinkage element identical to 

that used by Browne et al. (1975) to model the action of a tyre tread element. 
The parameters used for this case were 

L = 19*05mrn, D = 9*525mm, n = 8, 

h,(O) = 0-18mm, ,u = 9.6 x 10-4Ns/m2, 

Pren = 344.7 kPa, v = 0.499. 

For these parameters and the velocity range considered, (1) is clearly satisfied. 
Two types of inclination history were considered. For the first one, @ ( t )  is 

given by (15) for hm(t) > 0. For h,(t) < 0, @ ( t )  = p .  The second inclination 
history was based on the moir6 data of Browne (1975a). The two pressure con- 
straints considered were those of constant load and the loading function depicted 
in figure 6. This loading function is based on the tyre footprint pressure data of 
Lippmann & Oblizajek (1974) modified as described in Browne et al. (1975) to 
account for the presence of the fluid film. The effect of a slip velocity of 0.87 m/s 

,u/p = 9.3 x lo-’ m2/s, E = 2585 kPa, 
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FIGURE 8. Representative pressure distribution for parallel sinkage of a rigid element; 
= 1.0, contour interval = 0.217. E X / L ,  .% = Z / L .  

was also considered. Time histories of the minimum film thickness are plotted 
in figure 7. Time histories of the minimum film thickness for rigid parallel and 
deformable parallel sinkage are included for comparison purposes. For this 
representative set of tread-element parameters, the slip velocity of 0.87 m/s has 
no significant effect on the sinkage behaviour of the element. 

The effect of inclination is most pronounced during the initial stage of sinkage, 
i.e. when @ ( t )  is largest. The total sinkage time is more strongly influenced by 
whether the sinkage element is rigid or deformable than by the inclination 
histories considered. For the deformable element, the increase in velocity due to 
inclination results in the formation of a larger pocket. After this pocket has 
formed and trapped fluid, the sinkage velocity for inclined sinkage actually 
drops below that for parallel sinkage. 

Figure 8 shows a contour plot of the pressure distribution for the parallel 
sinkage of a rigid element under constant load. Figure 9(a)  shows a contour 
plot of pressure for parallel sinkage of a deformable element under the same 
constant load. A contour plot of the corresponding film thickness is given in 
figure 9 (b ) .  Comparison of figure 9 (a)  with figure 8 shows clearly how the pocket 
traps fluid and increases the area of the high pressure fluid region. 

A contour plot of the pressure distribution for inclined sinkage [@(t )  given by 
(15)l of a rigid element under constant load is given in figure 10. Comparison of 
figure 10 with figure 8 clearly shows how inclination causes asymmetry of the 
pressure distribution. Figure 11 (a) is a contour plot of the pressure for a deform- 
able element under the same constraint. A contour plot of the corresponding 
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FIGURE 9. (a) Representative pressure distribution and (a) film-thickness distribution for 
parallel sinkage of a deformable element; = 1.0, S = 83.75. (a) Contour interval = 0.164. 
(b)  Contour interval = 0-0237. 
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FIGURE 10. Representative pressure distribution for inclined sinkage of a 

rigid element; = 1.0, u = 0.02778, p = 0, contour interval = 0.255. 

film thickness is shown in figure l l ( b ) .  The influence of the deformation pocket 
on the pressure distribution of figure 11 (a)  is clearly visible. 

5. Discussion 
An analysis has been presented for the inclined non-inertial descent of a sinkage 

element onto a rigid surface. The effects of deformation of the element, slip 
velocity and time-dependent loading conditions were considered. Contrary to 
the assumption of Moore (1964), inclination results in significant asymmetry of 
the pressure distribution. The centre of pressure may move by as much as 15 % 
of the length of the inclined sinkage element. The assumption by Moore that 
corner effects for an inclined square plate are the same as for a parallel square 
plate is, at best, reasonable for only a very restricted range of inclination angles. 

Inclination was found to result in a dramatic increase in the initial sinkage 
velocity. For a rigid element, the sinkage velocity approaches that for parallel 
sinkage as the angle of inclination @ ( t )  decreases. For a deformable element the 
initial velocity increase results in a larger deformation pocket. This pocket traps 
more fluid and quickly reduces the sinkage velocity. For the range of parameters 
considered, the sinkage velocity was reduced below that for parallel sinkage. In  
summary, the total sinkage time was more strongly influenced by whether the 
sinkage element was deformable or rigid than by whether or not there was 
inclination. 

The results for a deformable sinkage element presented here and in Browne 
et al. (1975) are of particular interest in the area of tyre traction. A deformable 
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FIGURE 11. (a) Representative pressure distribution and (b)  film-thickness distribution for 
inclined sinkage of a deformable element; = 1.0, a = 0.02778, /3 = 0, S = 83.705. 
(a) Contour interval = 0.187. (b) Contour interval = 0.096. 
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tread element is found to descend rapidly through the fluid film until initial 
contact occurs at the tread element’s corners. Available tyre traction is strongly 
dependent on whether or not there is sufficient pavement microtexture (Rohde 
1976) to allow the fluid trapped between the tread element and the pavement 
surface to escape. Varying such parameters as slip velocity and surface inclina- 
tion results in changes in the time to initial contact which are small compared 
with the changes found in going from a rigid-plate model to a deformable- 
element model. Both the slip velocity and the surface inclination, however, 
result in changes in the pressure distribution and consequently in the shape and 
depth of the deformation pocket. The effect of such changes, if any, on traction 
production requires a more detailed understanding of the post-contact phase of 
tread-element performance. An investigation of this post-contact phase is 
currently underway. 
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